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fn other words the considered flow is stable, if ineq~lities (1.1) and the condition 

derived in Sects. 2-4 which relates to the particular flow are satisfied at the shocks. 
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We obtain necessary conditions for minimum drag of a body in a viscous fluid 

when the flow is described either by the exact Navier-Stokes equations or by the 
approximate Oseen equations, We study some of the characteristics of optimal 
bodies. The problem of optimi~ng the shape of a body in the flow of a viscous 

fluid was considered peeviously in [l] in the Stokes approximation, wherein ne- 
cessary conditions were derived which the shape of a body of minimum drag 
must satisfy ; some qualitative characteristics of optimal shapes were also inves- 
tigated. 

1, The stationary flow of a viscous incompressible fluid over a body S is described 
by the Navier-Stokes equations and the no-slip boundary conditions on the body surface. 
For convenience in our transformations we consider, in the sequel, a finite volume of fluid 

fz, hounded in its interior by the surface of a body S and, on the outside, by a surface 
Z on which the velocity vector u is specified, For the case in which an ~bo~ded 
mass of fluid flows over the body the minimum distance &om the body surface &’ to the 

surface I: must tend to infinity. 
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We consider the following variational problem: find, among bodies of specified volume 
Q, a body S for which the energy dissipation rate G is a minimum. Here we assume 

that the velocity distribution on the surface 2 does not depend on the shape of the body. 
We note that if the flow on the surface 2 is a translational flow u = const, then the 
magnitude of the drag is equal to G / u and the problem of the minimum energy dissi- 

pation rate becomes equivalent to the minimum drag problem. 

In dimensionless variables the equations of motion of the fluid, the boundary condi- 

tions, and the minimizing functional have the form 

@--Gp-R((vV)v=O, Vv=O, vls=O, vIc=u (1. I) 

(1.2) 

2. We obtain a necessary condition for the functional (1.2) to be a minimum, sub- 
ject to the differential constraints (1.1). Let the surface of the body S, be specified in 
the parametric form xi = zoi(q, r), where q and r are parameters. Consider the 
family of bodies S,, defined by the equations 

xi = zoi (4, 4 + E nif (Q7 r), 0 < E < 1 

where ni are the components of the unit exterior normal vector to the surface s,, and 

f (q, r) is a fixed function. Let v, and pc denote the solution of the boundary value 

problem (1.1) with boundary conditions on the surface S,. We write the quantities V, 

and pE in the form 
VE = vg + EV1 + 0 (E), PE = PO + EPl + 0 (&) (2.1) 

The functions vO and p,, satisfy the boundary value problem (1.1) for the body SO. 

We take the boundary conditions for the velocity on the surface S, with due regard 

to boundary conditions for v,.At the outer boundary 2 of the fluid we assume the boun- 
dary conditions to be independent of the shape of the body S. Thus, for the functions 

~1 and p1 actor ding to (1. l), (2. l), we have the boundary value problem 

Av, - Vp, - R [(v,V) VI+ (v,V) vol = 0, Vvl = 0 CL 2) 

v1Is= -r%, VI/X = 0 

In the notation adopted here, the functional (1.2), calculated for the body 8, , has 

(2.3) 

the form 

G&J=+\ i (~+~)*~Q=G(&)+ 
4, i,j=l 'I 1 

E 
8zY"i 

avOj 
-+- 

)( 

"Ii 

n, i,j=l 
axj axi -q + 

Transforming the first integral in Eq. (2.3) through an integration by parts and taking 

into account the boundary conditions for the functions vO and v,, we obtain 

G(S,)=G(So)+~~fl~~2dS-2~\~1Avod(Lf.~(~) 
. (2.4) 

Let p* and v* be scalar and vector functions defined in Q,,, and assume that the 
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function v* satisfies the zero boundary conditions v* Jn z v* Is = 0. We multiply 
the first of the equations (2.2) scalarly by v* and the continuity equation by p* . Adding 

the resulting expressions and integrating over the domain Q,,, we have 

0 = \ {Vi” [ Iv 
6” 

li - Dip- R(zI~~'?~v~~ + U~j'i'ju,i) + p*V,~li}dn 

Integrating this expression by parts twice, and using the boundary conditions for the func- 
tions vii and vi * , we obtain (2.5) 
o= 

c . 
Vii $$” dS + \ {Cli [ YVi* - Tip* + R (t?ojVjUi”- Vj*ViV,j)l $-plVj~~j”} dSt 

a1 
1, 

n, 

We now determine the functions u * and p* as the solution of the boundary value 
problem 

A TV; _ Vip* -+ R (v,jVjt’i* - ~J~*V~?‘,~) :=- :! h z’Oi (2.6) 

ViVi” = 0 7 vi* Ix :z I$* Is z.7 0 CL 7) 

Then the expression (2.5) mav be rewritten in the form 

0 r= ’ (;li~ dS --~ 2 5 l?*i ~~.iv,idR 
s (2.8) 
s D do 

Substituting (2.8) into Eq. (2.4) and taking into account the boundary conditions for the 

vii, we obtain G(S,)=G(S,)-i~sf(~~[s,-~*f)dS 

SO 

Since the minims of the functional G (A’) is sought in the class of bodies of unit 

volume, the function f defining the variation of the boundary S,, must satisfy the 

condition 
s fdS = 0 (2. $1 
SP 

However, the condition that the first variation of the functional G (S) vanish leads t0 

the equation 

s ( f 
&” 
dir’ -& [vi, - v*]) dS =- 0 (2.10) 

& 
It is evident from a comparison of the expressions (2.9) and (2.10) that the optimal 
body must satisfy the condition 

In other words, the equality (2.11) is a necessary condition for an extremum of the func- 

tional G (s) on the class of bodies of constant volume. 
Similarly, we can obtain a necessary condition for an extremum of the functional 

G (8) , subject to other isoperimetric conditions. In particular, if we seek the body of 

minimum drag among bodies with a specified surface area, we find that the variation 
of the boundary must satisfy the condition 

c UfdS : 0 
s: 0 

where H is the mean curvature of the body surface calculated at an appropriate point. 
Therefore, the necessary condition for an extremum in this case has the form 

[vo - v*]) ia = const 
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3, In the case R --t 0, corresponding to the Stokes approximation, Eqs. (1.1) and 

(2.6) assume the form 
nv = vp, av* = Vp” + 2Av 

After substituting the first equation into the second, we obtain 

nv* = v (p” + 2p) (3.1) 

However, the boundary value problem (2. ‘7)‘ (3.1) has only the trivial solution v* = 0, 

P” $- 2p = conSt. Therefore, in this case, the necessary condition (2. Xl) for minimum 
drag assumes the form av 2 I I -ZS 

= const 

which corresponds to the results given in [I] e 

In giving an approximate description of the motion of a viscous incompressible fluid 

in the case of a specified uniform translational flow u = con& at infinity, use is often 
made of the Oseen equations,theform of which is 

R(uV)v = -vp+.!lv, TV = 0 (3.2) 

To obtain a necessary condition for a minimum of the functional (1.2)‘ subject to the 
differential constraints (3.2). we can follow the same procedure as in the case when the 
velocity field is determined from the Navier-Stokes equations. We give the final result, 

omitting the intermediate details. The necessary condition of minimum drag for bodies 
of constant volume has the form 

( a\- 
% 7g-g ’ an v--v*1 1 = const 

where the function V* is a solution of the boundary value problem 

nv*- Vp” +R (uV)v* =2Av, Vv" =O, v*IS=v*]m =O (3.3) 

Subtracting the first of the equations (3.2) from Eq. (3.3) and introducing the notation 
u’ = -u, Y” I= Y* - v, p’ =p* + p, we obtain 

R (UT') v' = - vp’ + nv’, Vv’ = 0, v’ [_ = u’, v’ Is = 0 

In other words, the function v’ is the solution of the system of Oseen equations in the 
case in which the ~anslat~onal flow U’ = -U is specified at infinity, The mechanical 

significance of the function v* is then evident ; it is simply the sum of the velocities v 
and v’ for translational flows over the body having velocities at infinity of u and -u 
respeCtively. 

4. Consider the plane-parallel flow of a fluid. It follows from the continuity equa- 
tions in this case that the vector fields v and V* admit stream functions q and $* 

u, = “$ , vy = - $_, v,* =: _!Y., 
ay 

vy* = - a4* 
8X 

Here, x and y are Cartesian coordinates in the plane of flow. The equations for the 

functions 9 and **are readily found to be 
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The boundary conditions for the functions 4 and $*, and the optimality condition, may 
be written in the form 

(4.2) 

We consider now the asymptotic behavior of the solution of the boundary value prob- 

lem (4,1)-(4.3) close to the stagnation point (branching point of the streamlines). In 

the x&plane we take a p, 8 polar coordinate system, with the pole at the stagnation 
point and the 8 = 0 axis directed along the streamline 9 = 0. We expand the func- 
tions ?@ and $* in powers of p 

% = Vf (@) -1 0 (P”), +* == p”g (0) -F 0 (P”) (4.4) 

If the distribution of velocities u on the surface Z is symmetric with respect to the 
0 = 0 axis, and if the optimal body is unique, then the body must also be symmetric 

with respect to this axis. We assume, therefore, that the optimal body is symmetric with 

respect to the 8 = 0 axis. In particular, it follows from this that the functions I$ and 
q* must be odd functions of 8. 

Let the surface of the optimal body be given by the equation 

8 = &OX i- 0 (P> 

where 8, = const. Then the boundary conditions for the functions 9 and $* can be 
written in the form 

9 1s = o”f (-i_&) = 0, g IS = pn-I/’ (_c 0,) = 0 
(4.5) 

9” 1s = p”g(+0,) = 0, SjS = p”-ig’(_t0,) = 0 

Substituting the expressions (4.4) into Eqs. (4.2) and (4.3), we obtain 

N,,(f) + &PM,(f) = 0, N,(g) + Q”L,&!? f) = 2 Pn-mKL(f) (4.6) 
~~(~) = (f” + 72~~~ + (ra - 2)2(f” i- nV 

Here N,, if), fif,@> and &,,(g, f) are certain differential expressions inde~ndent 

of p ; the function 9 vanishes at the stagnation point, so that we can assume n > 0 

and discard the second terms on the left-hand sides of Eqs. (4.6). We have 

N,(f) = 0, N,(g) = 2 p*-“N,(f) 

We now substitute the expansions (4.4) into the optimality condition (4.3) 

1~2n-4 (f’y + p* +yg$ __Jro, = const 

It folIows from this formula that the exponents m and n must satisfy one of the condi- 
tions : either n > 2 and m + n = 4, or n = 2 and m + n > 4. Consider the 

first case, The solution of the system of equations (4.6) then has the form 

f = a sin (2 + Q 8 + p Sir1 5 8 (4.7) 
g = y sin (2 - E) t) + Et sin 5 0 
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where g = 2 - m = n - 2, and a, p, y and 6 am arbitrary constants. Next, 
substituting the expressions (4. ‘7) into the boundary conditions (4.5), we obtain a system 
of equations for 5, %, G f% Y and 6 

a sin (2 + E) 8, + p sin gOI = 0 

a (2 + E) cos (2 + E) 01 + BE COs 8-4 = 0 

y sin (2 - g) 0r + 6 sin Q3, = 0 

y (2 - g) cos (2 - E) 8, + 65 cos w, = 0 

ft can be verified that for E # 0 and 0 < 8, < n this system of equations has 

no nonzero solutions for constant oE, #J , y , 4 _ Consequently, for the optimal body the 

exponent n cannot be larger than two, i.e. we have the case n = 2, m + n > 4. 

The function f then has the form f = cc sin 2 8 f fi 6. Substituting this expression 
into the boundary conditions for the function 9, we obtain 

a sin 2 8, + b 6, = 0, 2 ce cos 2 8, + j3 = 0 

Equating the determinant of this system of equations in cz and p to zero, we obtain an 

equation for 8,, namely, tg 2 6, = 2 0,. The root of this equation has the approximate 

value 8 , z 128,7”.Thus. in the plane-parallel case the optimal body has an angle at 

the stagnation point equal to 2 (n - 8,) 5 102.6’. 

5, We now consider axially symmetric flow. We introduce a ~lindri~l system of 
coordinates r, z. The functions v and V* then admit stream functions 9 and $*, which 
are definable by the equations. In this case, from Eqs, (1.1) and (2.6) wt can obtain 
equations for the functions 4 and 9* 

K-/ * a - --- 
dr r ar 

The boundary conditions for the stream fictions and the optimality condition assume ) 

in this case, the form 

We can carry through, in the axially symmetric case, just as we did in the plane-paral- 
lel case, an investigation of the asymptotic behavior of the functions I# and 1c,* close to 
the stagnation point. We give the final result, omitting the intermediate calculations 

$ =a~s(COS%+~/*)(COS0-1)~+O(p~) (5.1) 

V = b ps (eos 8 + ifs) (cos 0 - 1)2 + 0 (p3) 

where a and b are arbitrary constants, p is the distance to the stagnation point, and 8 
is the angle reckoned from the axis of symmetry. It follows from the expressions (5.1) 
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that the optimal body has, close to the stagnation point, a conical shape with apexangle 
of 120’. 

We note that the terms discarded in Eqs. (4.6) am of the order p2R and, therefore, 
in satisfying the inequality p*R g-1 ( p3R < 1 in the axially symmetric case) we 
can, with a high degree of accuracy, assume the flow to be Stokes flow. Therefore, in 
the plane -parallel case, and also in the axially symmetric case, the magnitude of the 
angle 8, depends neither on the Reynolds number nor on whether the singular point is 

at the front or at the back. 

In conclusion, the author thanks F. L. Chernous’ko for his statement of the problem and 
N. V. Banichuk for useful discussions. 
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We consider the stationary convective diffusion problem (heat conductivity prob- 
lem) which occurs in the flow of a fluid with a shear velocity profile above an 
infinite plate. On the plate we assume discontinuous boundary conditions of zero 

flow, zero concentration type. This problem is solved by use of the Wiener-Hopf 
method with longitudinal diffusion taken into account. We obtain the exact solu- 

tion in the form of a complex integral and we determine an asymptotic expan- 
sion for the density of the flow on the plate close to and far from a discontinuity 

point in the boundary conditions. We show that close to this point the diff~ion 
boundary layer ap~o~mation (DBLA) is unsuitable. We determine the character 
of the singularity in the flow density at the discontinuity point and we make cor- 

rections to the DBLA. 

1. Statement of the problem rad ths Wiener-Hopf method, The 

mathematical statement of our problem is the following: 

2vyg=g+$$, o<r<m Y>% IV>0 

~(5,O) - 0, x<o; C(r,O)=O, s>o 

(1.1) 

(1.2) 

C(x,y)-+1, x+-m or y-+oa 

We seek a bounded solution of this problem, All variables are assumed to be dimensionless. 


